On Pairwise Compatibility of Some Graph (Super)Classes

نویسندگان

  • Tiziana Calamoneri
  • Blerina Sinaimeri
  • Mattia Gastaldello
چکیده

A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists an edgeweighted tree T and two non-negative real numbers dmin and dmax such that each leaf u of T is a node of V and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax where dT (u, v) is the sum of weights of the edges on the unique path from u to v in T . The main issue on these graphs consists in characterizing them. In this note we prove the inclusion in the PCG class of threshold tolerance graphs and the non-inclusion of a number of intersection graphs, such as disk and grid intersection graphs, circular arc and tolerance graphs. The non-inclusion of some superclasses (trapezoid, permutation and rectangle intersection graphs) follows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Reduction Operations to Pairwise Compatibility Graphs

A graph G = (V,E) with a vertex set V and an edge set E is called a pairwise compatibility graph (PCG, for short) if there are a tree T whose leaf set is V , a non-negative edge weight w in T , and two non-negative reals dmin ≤ dmax such that G has an edge uv ∈ E if and only if the distance between u and v in the weighted tree (T,w) is in the interval [dmin, dmax]. PCG is a new graph class moti...

متن کامل

Some classes of graphs that are not PCGs

A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dmin and dmax, dmin ≤ dmax, such that each node u ∈ V is uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax, where dT (u, v) is the sum of the weights of the edges on the unique path PT (u, v) from u to v in T...

متن کامل

Pairwise Compatibility Graphs

Let T be an edge weighted tree, let dT (u, v) be the sum of the weights of the edges on the path from u to v in T , and let dmin and dmax be two non-negative real numbers such that dmin ≤ dmax. Then a pairwise compatibility graph of T for dmin and dmax is a graph G = (V, E), where each vertex u ∈ V corresponds to a leaf u of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dm...

متن کامل

Not All Graphs are Pairwise Compatibility Graphs

Given an edge weighted tree T and two non-negative real numbers dmin and dmax, a pairwise compatibility graph of T for dmin and dmax is a graph G = (V, E), where each vertex u ∈ V corresponds to a leaf u of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax in T . Here, dT (u, v) denotes the distance between u and v in T , which is the sum of the weights of the edges on th...

متن کامل

Discovering Pairwise Compatibility Graphs

Let T be an edge weighted tree, let dT (u, v) be the sum of the weights of the edges on the path from u to v in T , and let dmin and dmax be two nonnegative real numbers such that dmin ≤ dmax. Then a pairwise compatibility graph of T for dmin and dmax is a graph G = (V,E), where each vertex u′ ∈ V corresponds to a leaf u of T and there is an edge (u′, v′) ∈ E if and only if dmin ≤ dT (u, v) ≤ d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.06454  شماره 

صفحات  -

تاریخ انتشار 2015